山西太原XX集团公司化工厂清洁生产实例调查。
1.概况
化工厂建于1958年,目前生产的主要产品有氯碱、苯酚、氯化苯、聚氯乙烯、环己酮、己二酸等,其中氯化苯是该厂的主要产品,对整个氯碱生产,平衡氯气,提高效益起有重要作用,直接关系到全厂整体生产能力的发挥。
该厂四十年给社会提供了大量的化学原料,对国家经济建设做出了重要贡献。
但由于种种原因,主要工艺基本上是五、六十年代的水平,工艺较落后,设备也告陈旧、技术呈现老化,致使单位产品物耗、能耗居高不下,物耗、能耗未能物尽其用,以废物的形式排入环境,水体中的有机物(COD)、空气中的苯类有害物质均超过国家或地方的排放标准,导致社会公众与企业矛盾十分突出,环境纠纷也有发生,环境问题已制约了企业生产发展。
为了改变企业被动状态,有两种模式可选择:一是采用先进技术对现有工艺进行全面更新换代,但根据目前企业经营状况,一时难以筹措巨额投资,二是对企业现有传统工艺进行剖析,找出物耗、能耗高,污染严重的工序,结合技术改造,分期分批解决。
后一种选择是符合企业实际,最现实有效的途径。
为此,该企业在1993年派员参加了国家组织的清洁生产培训,并在省、市有关部门的支持下,前后对己二酸、氯化苯两个产品作为示范开展了清洁生产审计。
通过“审计”使领导发现了生产工艺中存在着许多降耗、节能、减少污染,降低生产成本的机会,增强了开展清洁生产信心,同时培养了“审计”师资队伍和积累了经验,为企业持续清洁生产打下了良好的基础。
2.实施清洁生产效果
其效果包括两方面,即通过清洁生产审计产生的替代方案及实施替代方案取得的经济效益和环境效益。
2.1己二酸产品“审计”及效果
己二酸生产工艺分为两个工段,即己二酸工段和尾气工段12个工序。
己二酸工段包括氧化、结晶、压缩、压滤、离心和干燥六个工序;尾气工段包括供水、供料、配酸、风机、吸收和浓缩六个工序。
其生产工艺见流程图(图1)。
图1己二酸生产工艺流程
该企业在1994年开展了己二酸产品清洁生产审计,通过“审计”提出了12项替代方案,其中无费方案8项,低费方案2项,中费和高费方案各1项。
2.1.1不同替代方案名称及改进措施(见表1)。
表1己二酸工艺替代方案名称及改进措施
2.1.2实施替代方案的效果
1.实施无费方案的经济效益(见表2)
表2实施无费方案的经济效益
2.实施低价、中费方案生产工艺简述及经济分析。
替代方案工艺简述
氧化终点控制(F9)硝酸氧化环己醇的转化率偏低,工艺控制指标不完善,在现有工艺条件下,通过改变工艺反应控制指标,如:温度、压力、时间等来探讨提高环己醇转化率最佳参数,控制低级酸产生。
浓缩回流液回收(F10)因浓缩尾气部分冷却器损坏,浓缩蒸发气体难以冷却,影响回流液的回收。通过检修和更新恢复使用冷却器的效能。
尾气系统改造(F11)原氮氧化物(NOx)尾气吸收塔为塑料材质,易老化和泄漏,吸收率低,采取了改塑料材质的塔为不锈钢材质。增加高效填料和冷却器,提高吸收效率。
实施替代方案的经济性(见表3)
表3实施替代方案的经济性分析(万元)
实施替代方案的环境效益(见表4)
表4实施替代方案的环境分析
2.2氯化苯产品“审计”及效果
氯化苯生产工艺采用苯直接通氯气,在氯化铁催化下生成氯化苯的连续生产工艺。该装置分为:收送料、苯干燥、氯化、水洗中和、粗馏、精馏、包装、尾气吸收、多氯化物工序。其生产工艺见流程图2。
图2氯化苯生产重点工艺流程图
该企业在完成了己二酸生产工艺“审计”,基础上于1995年开展了对氯化苯生产工艺的清洁生产审计,通过“审计”提出了12项替代方案。其中无费方案4项,低费、中费和高费分别为2项、3项和3项。
2.2.1不同替代方案的名称及改进措施(见表5)。
表5氯化苯生产工艺替代方案名称及改进措施
该企业对提出的12项替代方案,按照先易后难,边审计边改进的原则,结合企业资金、技术实际,通过严格生产管理,加强对设备维修、维护,结合技术改造,分批分期的实施了替代方案。
2.2.2实施替代方案的效果,包括经济效益和环境效益。1.实施无费方案的效果(见表6)。
表6实施无费方案的经济效益
2.实施替代方案工艺简述
氯化冷却器改造原氯化冷却器采用的卧式冷却器其冷却效果差,难以满足生产工艺要求,后利用原冷却器改卧式为立式,改善了冷却效果,减少了氯化尾气中苯排放,提高了苯的转化率。
测试结果表明,使单位产品氯化苯的苯和氯化苯分别减少了8.36公斤和0.39公斤。
按1998年氯化苯产量15000吨计算,年节约苯125.4吨,节约氯化苯5.85吨。
按吨苯价值2000元,吨氯化苯2700元计,年节约价值分别为25.08万元和1.58万元,合计为26.66万元。
碱洗下水工序改造氯化液经水洗除去部分氯化氢,剩余氯化氢需用碱中和,并经分离回收苯后的废液排入下水。
由于原有装置为一级分离,加上设备、工艺落后,操作等原因,使氯化液和碱洗分离不完全,致使下水含苯达68g/L,氯化苯达26g/L。
为了降低苯的消耗,减轻对环境的污染,投资了6.3万元,改一级分离为两级分离,提高了分离效果,吨氯化苯产品苯消耗降低了20公斤,以年生产氯化苯15000吨计,约节约苯3000吨,按吨苯2000元计,节约价值60万元,扣除年运行成本1.75万元,净收益58.25万元。
下水每升含苯由68克降到0.78克,下降了90%以上。
水洗下水工序改造水洗中和工序加入一定量的水,将氯化液中的氯化氢洗去后排入下水,它是氯化苯生产中一股主要酸性废水。
为了利用酸性水制取盐酸,投资了14.7万元,对水洗下水工序进行了改造,采用了闭路循环工艺,将水洗下水(含8~10%HCl)打入氯化气吸收工序,用于副产盐酸的吸收液,年制取27%的副产盐酸2500吨左右,按吨盐酸200元,计其年经济效益为50万元左右,扣除年运行成本约10万元,净收益40万元左右。
每年减少排入水环境中含酸废水1.8万吨,减少排入大气环境中氯化氢900多吨,减轻了对环境的污染。
多氯化物改造及真空泵下水回收由于原有蒸馏是真空蒸馏,靠水环真空泵提供真空,蒸馏塔塔板较低,使塔的生产工艺无法按要求操作,影响了分离效果。
为了提高分离效果,投资了30.7万元,增加了塔的高度和塔板数。
实施该方案后,1998年与1994年相比,每天苯的排放量由19.5公斤降到0.6公斤,年节约7.2吨,氯化苯由每天30公斤降到4.2公斤,年节约氯化苯9.29吨,以吨苯和氯化苯价值2000元和2700。
元计,年节约价值分别为1.44万元和2.51万元,合计约4万元。其环境效益表7。
表7真空泵排水污染物变化
由此看出,实施该项替代方案,重要是环境效益,而经济效益不太明显。
尾气搬迁(含工艺改进)尾气系统指氯化反应的气相经冷却,喷淋吸收后的部分,直到产生合格的副产盐酸。
由于气相主要成分是氯化氢,属强腐蚀性介质,原该工序与氯化苯生产系统在同一厂房内,它不仅对员工操作岗位带来影响,而且对设备产生严重腐蚀。
为了使尾气与氯化苯分开,1997年投资了87.96万元,对尾气工序进行了搬迁,异地改造,将尾气系统搬到合成盐酸厂房,同时改进了工艺,改两级吸收为三级吸收。
实施替代方案后不仅节约了原料,而且污染物大幅度下降,见表8。
表8副产盐酸尾气污染物变化
由表看出,1998年与1994年相比氯化氢、氯气、苯、氯化苯四项有害物,均减少90%以上,除苯和氯化苯外(尚无国家标准),均符合国家现定的排放标准。
以年运行330天计,年减少苯排放为382.54吨,年减少氯化苯排放量28.16吨,按吨苯和氯化苯价值分别为2000元和2700元计,年节约价值76.51万元和7.6万元,合计84.11万元。
冷却水循环利用为了节约用水,降低生产成本,投资了87.7万元。
新建了一座小时400立方米冷却水系统,循环水用于各种换热器及其它工艺上,以减少新鲜水用量,使新鲜水用量由1994年的吨产品73.3吨下降到1998年的5.5吨,吨产品节约新鲜水67.8吨,按年生产氯化苯产品15000吨计,年节约新鲜水101.7吨,按吨新鲜水1.6元计,年节约水价值为162.72万元,扣除年运行成本32.3万元,年净效益为130.42元。
工艺改造为了扩大生产能力,降低生产成本需对生产工艺关键设备即更新粗馏,精馏加热器。
为此,1997年投资22.13万元,进行了工艺改造。
实施该替代方案后,不仅提高了生产能力,而且吨氯化苯生产成本由3380元降到3330元,吨产品节约蒸汽200公斤,其污染物排放维持在原水平上,按吨氯化苯2700元和吨蒸汽按47元计,年节约生产成本为75万元,年节约蒸汽价值14万元,合计经济价值89万元。
生产改造为了进一步提高产量,在前期工艺改造基础上,1998年投资334万元,通过增加设备,提高设备利用率来提高产量,该方案实施后,在不增加污染物排放量的情况下,氯化苯产量由原来不足10000吨增加到目前的15000吨。
3.实施替代方案的效果
氯化苯生产工艺,通过实施清洁生产审计提出的替代方案(F5?/FONT>F11)取得了明显的经济效益和环境效益,见表9?/FONT>10。
表9实施不同替代方案经济性分析(万元)
由表看出:实施7项替代方案的项目工程投资为252.49万元,年净收益为432.38万元,投资回收期不到一年。
表10实施替代方案的环境效益
由此可见,实施替代方案后年减少废水34.9万吨,废水和尾气中氯化氢906.85吨,395.72吨,氯化69.01吨,氯气3.22吨。
4.实施清洁生产成功经验
太原XX集团公司化工厂自参加国家首批清洁生产培训以来,进行了不间断地清洁生产,各级领导清洁生产意识不断得到增强,克服了资金和技术方面的困难,分批分期实施了己二酸和氯化苯生产工艺审计提出的替代方案,取得了明显的经济效益和环境效益,积累了进行清洁生产的经验,增强了持续深入开展清洁生产的信心,其成功经验表现在:
1.培育了清洁生产意识该企业1994年7月首次开展对己二酸生产工艺清洁生产审计,年底完成了“审计”报告,通过“审计”及实施无费、低费方案取得的效果,使企业领导认识到:生产工艺中存在很多“降耗,节能,减污”的机会,实施清洁生产对降低消耗,增加收益,减轻污染有着重要的意义,树立了开展清洁生产的信心,在完成己二酸产品“审计”后,1995年初相继对氯化苯生产工艺进行了“审计”,当年提出了“审计”报告,目前已起步对烧碱,乙烯两个产品进行清洁生产审计,。
做到“审计”工作不间断的进行。
2.克服了资金技术障碍就全国企业实施清洁生产情况来看,资金和技术尤其资金短缺,是影响实施清洁生产普遍存在的关键障碍,该企业不消极地等待外部条件,而着眼自身努力,寻求多种途径克服资金和技术的困难:
按照先易后难的原则,优先实施无费、低费或中费方案获取的收益,来弥补实施高费方案的资金短缺;
依靠企业技术人员和员工的努力,完成替代方案中设备改进或制造及安装任务,节省工程投资;
把清洁生产替代方案,纳入到企业设备检修或生产工艺技术改造中一并解决;
带着实施清洁生产中的技术难点,到同行业中调查和收集先进技术、信息,克服实施清洁生产中的技术障碍。
截止1998年,分期分批完成了己二酸和氯化苯两个产品清洁生产审计。
提出的24项替代方案。
3.巩固清洁生产成果
为了巩固清洁生产成果,该企业针对清洁生产审计发现生产管理中存在的缺陷,调整了环保机构,完善健全了环保、生产管理制度。
调整环保机构在传统的尾端治理污染的模式下,该企业设了独立环保处,主要负责企业排污口的污染物是否符合国家或地方规定的污染物排放标准,忽视了生产工艺过程中原料消耗,污染物产生量,致使环保与生产相脱节。
实施清洁生产后,为了在生产工艺过程中控制污染物的产生,调整了原单设的环保处为生产环保处,环保管理不仅监督尾端污染物排放情况,更重要的是把环保管理内容渗透到生产管理之中,互为补充,相互促进,求得了环保与生产内在统一。
完善健全了管理制度针对清洁生产审计发现的生产工艺中跑、冒、漏及物料流失等问题,完善了设备完好率,运转率和定期检修制度以及修定了原料消耗定额等规章,并将每个员工工作优劣与奖金、工资挂钩,实行守章者有奖,违章者受罚,按月评定,奖惩兑现。
运用行政管理制。
度和经济鼓励相结合的手段,增强了员工的工作责任感和学习技术的积极性,它对巩固清洁生产成果起有重要的作用。
设立环保、生产“监理员”为了“管理”制度持续地有效实行,该企业建立了“监理员”制度。
机构编制每班三人,其中监理人员两人,监测人员一人,每天三班24小时实行现场监督和环保监测。
“监理员”职责范围和检查内容:
范围:涉及生产所有单位的监督管理。
内容:包括生产操作控制指标执行情况及查阅原始记录;环保装置运行价查;非正常排放管理,“三废”排放抽查。以上每项均有具体价查考核标准。
“监理员”权限“监理员”对现场监督检查发现的问题有权下发限期整改通知单,对生产现场出现的一些属设备管线问题,通知分厂立即抢修,维护,跟踪复查落实,对限期不整改的进行处罚,直接下发经济处罚单。
对属人为造成的问题,直接下发经济处罚单。
己二酸的生产工艺
对微波促进杂多酸催化剂催化双氧水氧化环己酮制备己二酸的反应,考察了5种催化剂以及催化刺用量、反应原料、微波辐射功率和辐射时间对己二酸产率的影响。
反应的优化条件为:3.5ml环己酮、0.5g钨酸钠、0.5g磺基水杨酸、15ml30%双氧水,在微波辐射功率为400W下反应50min,其产率达72.37%。
己二酸的合成方法
1.1以环己醇为原料合成己二酸
蒋永生等以聚乙二醇为相转移催化剂,在功率为50W的超声波作用下,采用30%的硝酸氧化环己醇合成己二酸。
在反应过程中,废气中的NO2质量浓度明显减小,吸收处理完全,减少了NO2对大气环境的污染,己二酸的产率可达到46%。
采用稀硝酸氧化环己醇未见有明显产品生成,表明聚乙二醇-300有较好的催化效果,当相转移催化剂的用量为2%时,具有很明显的催化效果。
超声波及相转移催化剂在反应中均有重要作用,超声波作用时间为40min最佳。
马祖福等研究了以Na2WO4·2H2O为催化剂,磺基水杨酸为配体,采用清洁的双氧水为氧化剂催化氧化环己醇合成己二酸。
采用正交设计的方法,综合考虑了催化剂与配体比例、催化剂用量及反应时间对反应的影响,以及各因素之间的相互作用对试验结果的影响,确立最佳反应条件。
在反应初期形成过氧钨酸盐有机酸配位化合物,此活性中心不但具有载活性氧物种,而且具有一定的亲油性,使双相体系中发生在水相里的氧化和水解反应易于进行,催化效果较好。
该反应操作简单,易于控制,且副产物只有水,是一种对环境友好的合成路线。
王向宇等研究了以精苯为原料制备环己烯的工艺条件。
精苯在钉催化剂的存在下控制一定的温度、压力可以生成环己烯和环己烷。
苯的转化率为40%-50%,其中环己烯的选择性为80%。
再在高硅沸石催化剂存在下,控制一定的浓度、压力,可使环己烯水化生成环己醇。
环己烯的转化率为10%,环己醇的选择性为99%。
环己醇被硝酸氧化即可制得己二酸。
采用该工艺生产己二酸具有产品质量好,纯度高的特点。
此外,精苯在部分加氢时的反应条件温和,加氢及水合反应均在液相中进行,操作安全,不需采取专门的安全措施;副产品少,环己烷是唯一的副产品,它也可以作为化学试剂出售;加氢和水合反应过程不像传统工艺那样产生一元酸、二元酸、酯等,废液量少,环保投资低,具有环保优势;生产过程不存在设备结垢问题,不存在堵塞问题,因此事故少、维修少;能耗低,生产成本较低。
宫红等采用长链的伯铵或叔胺的硫酸盐为相转移催化剂,在Na2WO4·2H2O的作用下,以高锰酸钾氧化环己醇制备己二酸。
反应条件温和,不产生有毒气体,反应速度快、产率较高。
值得注意的是,若不用此相转移催化剂,且没有控制好高锰酸钾的滴加量,会造成冲料而引起爆炸。
杨秀英用聚乙二醇(PEG-6000)、十二烷基硫酸钠(SDS)等作为环己醇液相氧化制取己二酸的相转移催化剂,实验发现SDS在高锰酸钾氧化环己醇的反应中具有较好的相转移催化作用,改变了反应体系的微环境,能够提高己二酸的收率。
Bfziat等使用廉价、清洁空气作为氧化剂,用碳作为载体,铂为催化剂C(Pt):5.4%,在液相体系中由环己醇合成了己二酸。
在温度423K、压力5MP时己二酸的转化率、选择性均为50%,主要副产物为戊二酸和丁二酸。
该反应以清洁、廉价的空气作为氧化剂,对在水相中由环己醇合成有价值衍生物,也是一种比较理想的氧化方法。
1.2以环己酮为原料
纪明慧等以质量分数为30%的双氧水为氧化剂,在没有任何有机溶剂或助催化剂存在的情况下,考察了磷钨酸催化环己酮氧化合成己二酸的活性。
结果表明,磷钨酸在环己酮氧化合成己二酸的过程中显示了较高的催化活性。
研究了催化剂用量、过氧化氢用量、温度、时间等因素对磷钨酸催化活性的影响。
反应的适宜条件为:n(环己酮):n(磷钨酸):n(过氧化氢)=150:0.5:587,反应温度为92℃,反应时间为8h,己二酸的收率可达60.6%。
蔡磊等以30%的双氧水为氧化剂,磺基水杨酸为配体,二缺位Dawson结构杂多盐K10Na2H2P2W16O60·18H2O为催化剂使环己酮氧化合成己二酸。
杂多酸具有较强的酸性,不但具有类似于浓溶液的“拟液相”行为,而且有极强的氧化-还原能力,在均相和多相有机反应中,是理想的酸型和氧化型双功能性的催化剂。
当n(杂多酸):n(磺基水杨酸):n(环己酮):n(过氧化氢)=2:1:100:400,反应温度为98℃,反应时间为5h时,己二酸的分离收率可达76.7%。
Dawson结构杂多盐催化剂制备简单,反应体系无需溶剂和相转移剂,反应时间较短,不失为一条合成己二酸环境友好的工艺路线。
袁先友等研究了以杂多酸为催化剂,在微波辐射条件下,以过氧化氢(30%)作为氧化剂,氧化环己酮来合成己二酸,对反应物的种类、催化剂种类及用量、配体种类、微波辐射功率及反应时间等因素对合成反应的影响进行了探讨,优化了催化合成己二酸的反应条件。
实验结果表明,采用3.5mL环己酮、0.5g钨酸钠、0.5g磺基水杨酸、15mL30%双氧水,在微波辐射功率为400W下反应50min,其产率可达到72%。
张敏等以30%的双氧水为氧化剂,用钨酸钠与草酸形成的配合物为催化剂,研究了在无有机溶剂、无相转移剂的条件下,由环己酮氧化制备己二酸的反应。
结果表明,最佳反应条件为钨酸钠:草酸:环己酮:30%的双氧水的物质的量比为2.0:3.3:100:350,在92℃下反应12h,可制得80.6%的己二酸。
此法具有收率高、不使用有机溶剂、反应体系中不存在任何无机或有机卤化物等绿色化学所要求的特点。
1.3由环己烯合成己二酸
李华明等以环己烯为原料,含30%的过氧化氢的双氧水为氧化剂,在磷钨酸作为助剂的条件下,采用磷钨酸作催化剂合成己二酸。
磷钨酸在环己烯氧化合成己二酸的过程中具有一定的催化活性,草酸的加入可明显地提高磷钨酸的催化活性,当n(环己烯):n(磷钨酸):n(草酸):n(双氧水)=100:1:1:538,反应温度为92℃,反应时间为6h时,己二酸的收率可达70.1%。
此法是合成己二酸是一种环境友好的合成路线。
阎松等研究了无需有机溶剂、酸性配体及相转移剂,以30%双氧水为氧源,单独使用三氧化钨作催化剂催化氧化环己烯合成己二酸即可达到较高的产率和纯度。
当三氧化钨用量为5.0mmol,三氧化钨:环己烯:双氧水的物质的量比为1:40:176时,在回流温度下反应6h,己二酸分离产率为75,4%,己二酸纯度为99.8%。
三氧化钨催化剂重复使用4次,己二酸的分离产率仍可达到70%。
若使用十聚钨酸季铵盐作为催化剂,用过氧化氢把环己烯直接氧化为己二酸。
所用的催化剂在水中是不溶解的,但在过氧化氢的作用下,它能参与活性氧转移的反应,并溶解于反应体系。
当过氧化氢消耗完毕时,催化剂又沉淀出来,因此易于循环使用。
通过催化剂的反应控制相转移,把均相和异相催化剂的优点结合在一个反应体系中,该法避免了均相催化剂分离的困难,并提供了生产己二酸的新方法。
因单独使用钨酸作催化剂时活性较低,尽管钨酸不溶于水,但钨酸很容易溶于30%双氧水中,因此,钨酸作催化剂并不影响己二酸的纯度。
以有机溶剂为反应介质,在环己烯氧化合成己二酸的反应中,钨酸的催化活性高于钨磷酸。
曹发斌等研究了不同的有机酸性添加剂对反应的影响。
以钨酸、有机酸性添加剂为催化体系,在无有机溶剂、相转移剂的情况下,催化30%过氧化氢氧化环己烯合成己二酸。
当钨酸:有机酸性添加剂:环己烯:过氧化氢(物质的量比)=1:1:40:176时,使用有机酸性添加剂考察钨酸的催化性能,结果表明以钨酸/间苯二酚催化氧化环己烯的催化效果最优,反应8h时己二酸分离产率达90.9%、纯度接近100%;而不使用有机酸性添加剂时,己二酸分离产率只有72.1%,产品纯度为96.2%。
当使用磺酸水杨酸、草酸、水杨酸为有机酸性添加剂时,随反应时间的增加,己二酸分离产率均升高,但反应6h以后,己二酸分离产率随时间的变化不明显。
当磺酸水杨酸用量为2.5mmol时,己二酸分离产率和纯度均较高。
钨酸-磺酸水杨酸催化体系重复使用5次后,己二酸分离产率仍可达到80.5%。
李惠云等报道了在无相转移剂条件下,用磷钨酸催化过氧化氢氧化环己烯合成己二酸,收率最高为72.6%。
草酸的加入使己二酸产率明显提高。
草酸在过氧化氢反应系统中与磷钨酸存在强的相互作用,这种相互作用在很大程度上存在着配位效应,配体通常可改变中心原子的电子云密度以及空间环境,由于中心原子的这些变化,导致催化剂中心金属原子上的配位发生一系列的变化,这种配体效应增加了催化剂活性中心的载活氧化性和亲油性,从而有利于反应的进行。
相同情况下以钨酸/无机酸性配体为催化体系,在无有机溶剂和相转移剂的情况下,催化过氧化氢氧化环己烯合成己二酸。当使用磷酸、硼酸为无机酸性配体时,随反应时间的增加,己二酸产率均升高。
制取己二酸传统的氧化方法为硝酸氧化法,该工艺存在严重的氮氧化物污染,以过氧化氢氧化法合成己二酸则不存在此问题,过氧化氢是己二酸生产的一种理想的清洁氧化剂,氧化产物为己二酸和水,这从根本上消除了污染源;且具有反应条件温和、易于控制等优点,有望取代硝酸氧化法,成为今后己二酸生产的趋势。
用过氧化氢水溶液作氧化剂合成己二酸的过程中,催化剂至关重要。
但用过氧化氢水溶液氧化环己烯合成己二酸的反应过程中,1mol环己烯氧化生成己二酸理论上需要消耗4mol过氧化氢。
据文献报道,过氧化氢的实际消耗约需过量10%。
过氧化氢消耗高是限制此法工业化生产的主要问题,用部分氧气代替过氧化氢,以降低过氧化氢的消耗是此法研究的一个方向。
1.4采用不同的氧化法由环己烷合成己二酸
在钴催化剂存在下,环己烷在仁60℃,1MPa经未稀释的空气氧化,得含环己醇、环己酮混和油(KA)油反应混和物(单程转化率5%左右),经精馏分离得KA油,未反应的环己烷循环使用。
采用该法的优点的技术成熟,操作简单,缺点是存在结渣问题,收率较低(单耗为1.12kg环己烷/kgKA油)。
1.4.2甲酸催化氧化法
环己烷在硼酸催化剂存在下,在168℃,1MPa经空气氧化,得含KA油反应混和物(单程转化率10%左右)经分离得KA油,未反应的环己烷循环使用。
用该法的优点是收率较高(单耗为1kg环己烷/kgKA油)。
缺点是工艺路线复杂,连续性较差。
1.4.3无催化氧化法
环己烷在180℃,2MPa经稀释后用空气氧化;得环己基过氧化氢,在催化剂作用下得含KA油反应混和物(单程转化率5%左右),经分离得KA油,未反应的环己烷循环使用。采用该方法具有上述两者的优点。
1.5使用苯或苯酚合成己二酸
1.5.1苯法
精苯经催化加氢生成环己烷,环己烷经氧化生成KA油(环己酮、环己醇的混和物),再经硝酸氧化生成己二酸。
该工艺的原料除精苯外还涉及氢气、硝酸(液氨)等,工艺流程长,一次性资金投入大,副产物较多,存在工业三废污染,产品收率不高。
但该工艺成熟,是目前工业上广泛采用的方法。
目前全球采用苯法生产的己二酸合计产量为238万t/a,占总产量的88.2%。
近年,在原始苯法的基础上,科研人员开发出一种新的己二酸生产方法,采用特殊催化剂使苯部分加氢生成环己烯,环己烯水合生成环己醇,再经硝酸氧化生成己二酸。
该方法在生产环己醇过程中氢气消耗较少,副产物为环己烷,生成环己醇的过程几乎没有三废污染,产品质量好,收率较高,生产成本相对较低。
目前日本旭化成和我国神马集团均采用此法生产己二酸,总规模约为17万t/a,占全球总产量的6.3%。
1.5.2苯酚法
苯酚加氢生成环己醇,而后用硝酸氧化制得己二酸。
该法设备投入和生产复杂程度与苯法相差不大,适合在苯酚原料相对丰富的地区。
仅在美国Hopewell、巴西Paulinia、比利时Zandvoorde、德国Zeitz和意大利Novara共5家工厂采用此法,总规模约为15万t/a,占全球总产量的5.5%。
1.6KA油空气氧化法
由于硝酸氧化所产生的氮氧化合物污染大气,所以人们在空气氧化方面进行了大量的研究工作。
目前,应用氧气作氧化剂的工艺研究,主要集中在环己醇、环己酮、环己烷生成己二酸催化剂的应用方面。
1963年美国科学技术公司连续发表空气氧化法制己二酸专利,同年,RhomHass公司用此法建成KA油空气氧化l万t己二酸工厂,但因质量不好未再扩建。
此法的优点是环境污染小,不存在硝酸回收问题;缺点是转化率不高,反应时间长,需要醋酸回收设备,且生成杂质多,精制工序复杂,设备费用增大。
该方法目前仍处于研发阶段。
1.7以C4烯烃为原料生产己二酸
(1)孟山都工艺此工艺以PdCl2为催化剂,用1,4-二甲氧基-2-丁烯为原料进行羰基化,反应压力为6.87MPa,反应温度为100℃,生产己二酸。
超过100℃催化剂失活;温度低于100℃反应速率低。
该法现仍在研究开发之中。
(2)巴斯夫工艺此工艺用裂解C4中的丁二烯(不经抽提)与一氧化碳在甲醇中发生羰基化反应,经一次羰基化反应得3-戊烯酸甲酯,经二次羰基化反应得己二酸二甲酯,最后水解得己二酸,采用八羰基二钴[CO2(CO)8]为催化剂,吡啶为促进剂,整个过程分为5步。
采用丁二烯羰基化工艺制备己二酸,原料丁二烯较便宜,收率较高(72%),产品2-酸含量高,其生产成本比环己烷氧化工艺低;缺点是工艺第杂,反应条件苛刻,副产物较多。
1.8以葡萄糖为原料
生产己二酸的传统原料-苯、环己烷及丁二烯都来自于石油,石油是不可再生的资源,利用可再生的生物资源代替石油是化工生产可持续发展的方向。
可利用D-葡萄糖生物催化合成己二酸。
在酶AB2834的催化下将D-葡萄糖转变为儿茶酚,儿茶酚在酶AB2834作用下进一步转化为顺,顺-己二烯二酸,顺,顺-己二烯二酸在室温和0.34MPa下铂催化加氢合成己二酸,氢化收率90%。
1.9其它合成方法
Chavan等分别以环己酮和环己醇混和物、环己烯、环己酮为原料,首次通过新颖的无硝酸工艺,以空气为氧源,使用Co/Mn簇配合物,合成己二酸。
实验表明,Co/Mn簇配合物的催化活性和选择性比单独使用钻、锰的醋酸盐高,同时己二酸的产率接近于目前使用硝酸工艺合成己二酸的产率。
周民锋等报道在微波照射条件下,以Na2WO4·2H2O(1mmol)为催化剂,用30%过氧化氢(44mmol)使1,2一环己二醇(10mmol)氧化开环合成己二酸。
在pH=1时照射5min,分离产率可达88%。
据Chcai&EngNews,2003,81(20):36报道,中孔二氧化硅负载的双金属催化剂可以将己二烯二酸转化为己二酸。
己二酸在工业中广泛用于生产尼龙66、聚酰胺、聚氨酯、润滑剂和其它材料。
目前,通过空气氧化环己烷工业化生产2-酸,而环己烷来源于不可再生的矿物燃料。
相反,己二烯二酸可以由D-葡萄糖经生物催化作用获得。
英国皇家研究院和剑桥大学采用由4种双金属催化剂固定的纳米粒子和2种工业上可得到的单金属催化剂,由反,反-己二烯二酸加氢合成己二酸。
Rulopt2在对于己二酸的选择性方面优于其它催化剂。
这项研究对于未来在广泛的加氢反应中使用高表面积、热稳定的双金属纳米催化剂是一个好的预兆,这种加氢反应可以实现由植物来源生产所希望的化学产品。
神马集团采用环己醇硝酸氧化法生产工艺。
环己醇在过量的硝酸溶液中氧化生成己二酸及副产物丁二酸、戊二酸等,利用己二酸、丁二酸、戊二酸溶解度的不同使己二酸结晶分离出来,用活性炭对己二酸进行脱色后再次结晶分离,使己二酸的纯度达到99.8%以上。
除以上介绍的几种己二酸生产方法外,还有环己烷硝酸一步氧化法、环己烯硝酸氧化法、环己烯氧-臭氧氧化法、丁二醇的羰基化法、过硫酸盐氧化法等。
还没有评论,来说两句吧...