初等函数在定义区间内一定连续吗
是的,初等函数都是连续的,可导的,可微的。因为初等函数都是由幂函数、指数函数、对数函数、三角函数、反三角函数与常数经过有限次的有理运算(加、减、乘、除、有理数次乘方、有理数次开方)及有限次函数复合所产生,并且能用一个...
是的,初等函数都是连续的,可导的,可微的。因为初等函数都是由幂函数、指数函数、对数函数、三角函数、反三角函数与常数经过有限次的有理运算(加、减、乘、除、有理数次乘方、有理数次开方)及有限次函数复合所产生,并且能用一个...
一切初等函数在其「定义区间」内都是连续的。定义区间,顾名思义,在某个区间上的函数都是有定义的。孤立的点构不成区间。“初等函数在其定义区间内可导”这句话是错的。y=|x|=√(x^2),这是一个初等函数,定义区间为(-...