纳米,也叫毫微米、奈米,是长度的度量单位,英文为Nanometer,因此纳米符号为nm。1纳米=10的负9次方米,比单个细菌的长度还要小的多。
【纳米基本含义】
单个细菌用肉眼是根本看不到的,用显微镜测直径大约是五微米。
假设一根头发的直径是0.05毫米,把它轴向平均剖成5万根,每根的厚度大约就是1纳米。
也就是说,1纳米就是0.000001毫米。
纳米科学与技术,有时简称为纳米技术,是研究结构尺寸在1至100纳米范围内材料的性质和应用。
纳米技术的发展带动了与纳米相关的很多新兴学科。
有纳米医学、纳米化学、纳米电子学、纳米材料学、纳米生物学等。
全世界的科学家都知道纳米技术对科技发展的重要性,所以世界各国都不惜重金发展纳米技术,力图抢占纳米科技领域的战略高地。
中国于1991年召开纳米科技发展战略研讨会,制定了发展战略对策。
十多年来,中国纳米材料和纳米结构研究取得了引人注目的成就。
目前,我国在纳米材料学领域取得的成就高过世界上任何一个国家,充分证明了我国在纳米技术领域占有举足轻重的地位。
纳米效应就是指纳米材料具有传统材料所不具备的奇异或反常的物理、化学特性,如原本导电的铜到某一纳米级界限就不导电,原来绝缘的二氧化硅、晶体等,在某一纳米级界限时开始导电。
这是由于纳米材料具有颗粒尺寸小、比表面积大、表面能高、表面原子所占比例大等特点,以及其特有的三大效应:表面效应、小尺寸效应和宏观量子隧道效应。
对于固体粉末或纤维,当其有一维尺寸小于100nm,即达到纳米尺寸,即可称为所谓纳米材料,对于理想球状颗粒,当比表面积大于60㎡/g时,其直径将小于100nm,达到纳米尺寸。
现时很多材料的微观尺度多以纳米为单位,如大部份半导体制程标准皆是以纳米表示。直至2017年2月,最新的中央处理器,也叫做(CPU,CentralProcessingUnit)的制程是14nm。
【纳米发展历程】
纳米技术与微电子技术的主要区别是:纳米技术研究的是以控制单个原子、分子来实现特定的功能,是利用电子的波动性来工作的;而微电子技术则主要通过控制电子群体来实现其功能,是利用电子的粒子性来工作的。
人们研究和开发纳米技术的目的,就是要实现对整个微观世界的有效控制。
纳米技术是一门交叉性很强的综合学科,研究的内容涉及现代科技的广阔领域。
1993年,国际纳米科技指导委员会将纳米技术划分为纳米电子学、纳米物理学、纳米化学、纳米生物学、纳米加工学和纳米计量学等6个分支学科。
其中,纳米物理学和纳米化学是纳米技术的理论基础,而纳米电子学是纳米技术最重要的内容。
纳米科技是90年代初迅速发展起来的新兴科技,其最终目标是人类按照自己的意识直接操纵单个原子、分子,制造出具有特定功能的产品。
纳米科技以空前的分辨率为我们揭示了一个可见的原子、分子世界。
这表明,人类正越来越向微观世界深入,人们认识、改造微观世界的水平提高了前所未有的高度。
有资料显示,2010年,纳米技术将成为仅次于芯片制造的第二大产业。
【纳米技术】
所谓纳米技术,是指在0.1~100纳米的尺度里,研究电子、原子和分子内的运动规律和特性的一项崭新技术。
科学家们在研究物质构成的过程中,发现在纳米尺度下隔离出来的几个、几十个可数原子或分子,显著地表现出许多新的特性,而利用这些特性制造具有特定功能设备的技术,就称为纳米技术。
从迄今为止的研究状况看,关于纳米技术分为三种概念。
第一种,是1986年美国科学家德雷克斯勒博士在《创造的机器》一书中提出的分子纳米技术。
根据这一概念,可以使组合分子的机器实用化,从而可以任意组合所有种类的分子,可以制造出任何种类的分子结构。
这种概念的纳米技术未取得重大进展。
第二种概念把纳米技术定位为微加工技术的极限。
也就是通过纳米精度的"加工"来人工形成纳米大小的结构的技术。
这种纳米级的加工技术,也使半导体微型化即将达到极限。
现有技术即便发展下去,从理论上讲终将会达到限度。
这是因为,如果把电路的线幅变小,将使构成电路的绝缘膜的为得极薄,这样将破坏绝缘效果。
此外,还有发热和晃动等问题。
为了解决这些问题,研究人员正在研究新型的纳米技术。
第三种概念是从生物的角度出发而提出的。本来,生物在细胞和生物膜内就存在纳米级的结构。
纳米科技现在已经包括纳米生物学、纳米电子学、纳米材料学、纳米机械学、纳米化学等学科。
从包括微电子等在内的微米科技到纳米科技,人类正越来越向微观世界深入,人们认识、改造微观世界的水平提高到前所未有的高度。
我国著名科学家钱学森也曾指出,纳米左右和纳米以下的结构是下一阶段科技发展的一个重点,会是一次技术革命,从而将引起21世纪又一次产业革命。
虽然距离应用阶段还有较长的距离要走,但是由于纳米科技所孕育的极为广阔的应用前景,美国、日本、英国等发达国家都对纳米科技给予高度重视,纷纷制定研究计划,进行相关研究。
【纳米延伸概念——纳米级】
纳米级就是颗粒在1纳米到100纳米之间的微粒。
【纳米应用】
电子器件
以纳米技术制造的电子器件,其性能大大优于传统的电子器件,功耗可以大幅降低。
信息存储量大,在一张不足巴掌大的5英寸光盘上,至少可以存储30个北京图书馆的全部藏书。
体积小、重量轻,可使各类电子产品体积和重量大为减小。
纳米材料"脾气怪"纳米金属颗粒易燃易爆,几个纳米的金属铜颗粒或金属铝颗粒,一遇到空气就会产生激烈的燃烧,发生爆炸。
因此,纳米金属颗粒的粉体可用来做成烈性炸药,做成火箭的固体燃料可产生更大的推力。
用纳米金属颗粒粉体做催化剂,可以加快化学反应速率,大大提高化工合成的产出率。
金属块
纳米金属块体耐压耐拉。将金属纳米颗粒粉体制成块状金属材料强度比一般金属高十几倍,又可拉伸几十倍。用来制造飞机、汽车、轮船,重量可减小到原来的十分之一。
陶瓷
纳米陶瓷刚柔并济用纳米陶瓷颗粒粉末制成的纳米陶瓷具有塑性,为陶瓷业带来了一场革命。将纳米陶瓷应用到发动机上,汽车会跑得更快,飞机会飞得更高。
氧化物
纳米氧化物材料五颜六色纳米氧化物颗粒在光的照射下或在电场作用下能迅速改变颜色。
用它做士兵防护激光枪的眼镜很好,将纳米氧化物材料做成广告板,在电、光的作用下,会变得更加绚丽多彩。
纳米半导体材料法力无边纳米半导体材料可以发出各种颜色的光,可以做成小型的激光光源,还可将吸收的太阳光中的光能变成电能。
用它制成的太阳能汽车、太阳能住宅有巨大的环保价值。
用纳米半导体做成的各种传感器,可以灵敏地检测温度、湿度和大气成分的变化,在监控汽车尾气和保护大气环境上将得到广泛应用。
药物
纳米药物治病救人,把药物与磁性纳米颗粒相结合,服用后,这些纳米药物颗粒可以自由地在血管和人体组织内运动。
再在人体外部施加磁场加以导引,使药物集中到患病的组织中,药物治疗的效果会大大提高。
还可利用纳米药物颗粒定向阻断毛细血管,"饿"死癌细胞。
纳米颗粒还可用于人体的细胞分离,也可以用来携带DNA治疗基因缺陷症。
目前已经用磁性纳米颗粒成功地分离了动物的癌细胞和正常细胞,在治疗人的骨髓疾病的临床实验上获得成功,前途不可限量。
卫星
纳米卫星将飞向天空在纳米尺寸的世界中按照人们的意愿,自由地剪裁、构筑材料,这一技术被称为纳米加工技术。
纳米加工技术可以使不同材质的材料集成在一起,它既具有芯片的功能,又可探测到电磁波(包括可见光、红外线和紫外线等)信号,同时还能完成电脑的指令,这就是纳米集成器件。
将这种集成器件应用在卫星上,可以使卫星的重量、体积大大减小,发射更容易,成本也更便宜。
机器人
"纳米机器人"的研制属于分子仿生学的范畴,它根据分子水平的生物学原理为设计原型,设计制造可对纳米空间进行操作的"功能分子器件"。
纳米生物学的近期设想,是在纳米尺度上应用生物学原理,发现新现象,研制可编程的分子机器人,也称纳米机器人。
合成生物学对细胞信号传导与基因调控网络重新设计,开发"体内"(invivo)或"湿"的生物计算机或细胞机器人,从而产生了另种方式的纳米机器人技术。
我国著名学者周海中教授1990年在《论机器人》一文中预言:到二十一世纪中叶,纳米机器人将彻底改变人类的劳动和生活方式。
太阳能飞机介绍
世界上第一架以太阳能为动力的飞机,是由第一架人力飞机的设计者美国麦克里迪设计的,并由美国国家航空航天局和杜邦公司制造。
它基本上是在人力飞机的基础上改造而来的,叫“蝉翼企鹅”号。
在它的翅膀上装的是太阳能电池。
电池发出电,供给电动机,电动机带动螺旋桨,使飞机得以飞行。
1980年8月,这架飞机由一个瘦小的女驾驶员布朗操纵,在14分32秒钟内,飞行了3.2千米。
整架飞机22.7千克,驾驶员体重为45千克。
1980年12月,美国又专门设计了一种太阳能飞机“太阳挑战者”号。
它的机翼和尾翼上都装有太阳能电池,总计达1.6万多片。
它的重量为90千克。
可在4360米高空,于8小时内飞行370千米。
1981年7月7日,这架飞机由美国人普达塞克驾驶,从巴黎起飞,以每小时40英里的速度,飞行了5小时19分钟,飞越英吉利海峡,成功地降落到英国东南部的拉姆斯盖特。
太阳能飞机不仅在能源危机的情况下,开辟了新的、取之不尽的能源,而且它没有废气、废油,不会造成环境污染;它没有发动机的轰鸣,不会有噪声污染;它还有飞行平稳、舒适的优点,是一种十分有前途的新机种。
但是它也有许多缺点:太阳能电池目前还十分昂贵,飞机成本高(据估计,一架单座太阳能飞机,仅太阳能电池费用就达数千美元);太阳能电池的效率还是太低,产生的电能有限,而且在夜晚和天阴时就没法工作。
所以,太阳能飞机要进入实用阶段,还得解决许多难题。
目前,科学家已在研究一种新型的太阳能电池。
也许不久的将来,太阳能飞机会有更大的功率,载重更多,飞得更快、更高、更远。
还没有评论,来说两句吧...