宇宙是天地万物的总称,所以很多的小朋友都会想要了解一些天文常识。下面为您精心推荐了有趣的天文科学小知识,希望对您有所帮助。
天文科学小知识
在那里,高斯开始对高等数学作研究。
并且独立发现了二项式定理的一般形式、数论上的「二次互逆定理」(LawofQuadraticReciprocity)、质数分布定理(primenumertheorem)、及算术几何平均(arithmetic-geometricmean)。
1795年高斯进入哥廷根(G?ttingen)大学,因为他在语言和数学上都极有天分,为了将来是要专攻古典语文或数学苦恼了一阵子。到了1796年,十七岁的高斯得到了一个数学史上极重要的结果。
最为人所知,也使得他走上数学之路的,就是正十七边形尺规作图之理论与方法。希腊时代的数学家已经知道如何用尺规作出正2m*3n*5p边形,其中m是正整数,而n和p只能是0或1。
但是对于正七、九、十一边形的尺规作图法,两千年来都没有人知道。
而高斯证明了:一个正n边形可以尺规作图若且唯若n是以下两种形式之一:1、n=2k,k=2,3,…2、n=2k*(几个不同「费马质数」的乘积),k=0,1,2,…费马质数是形如Fk=22k的质数。
像F0=3,F1=5,F2=17,F3=257,F4=65537,都是质数。
高斯用代数的方法解决二千多年来的几何难题,他也视此为生平得意之作,还交待要把正十七边形刻在他的墓碑上,但后来他的墓碑上并没有刻上十七边形,而是十七角星,因为负责刻碑的雕刻家认为,正十七边形和圆太像了,大家一定分辨不出来。
1799年高斯提出了他的博士论文,这论文证明了代数一个重要的定理:任一多项式都有(复数)根。这结果称为「代数学基本定理」(FundamentalTheoremofAlgebra)。
事实上在高斯之前有许多数学家认为已给出了这个结果的证明,可是没有一个证明是严密的。高斯把前人证明的缺失一一指出来,然后提出自己的见解,他一生中一共给出了四个不同的证明。
在1801年,高斯二十四岁时出版了《算学研究》(DisquesitionesArithmeticae),这本书以拉丁文写成,原来有八章,由于钱不够,只好印七章。
这本书除了第七章介绍代数基本定理外,其余都是数论,可以说是数论第一本有系统的着作,高斯第一次介绍「同余」(Congruent)的概念。
「二次互逆定理」也在其中。二十四岁开始,高斯放弃在纯数学的研究,作了几年天文学的研究。
2、最早使用小圆点作为小数点的是德国的数学家,叫克拉维斯。
4、“七巧板”是我国古代的一种拼板玩具,由七块可以拼成一个大正方形的薄板组成,拼出来的图案变化万千,后来传到国外叫做唐图。
5、传说早在四千五百年前,我们的祖先就用刻漏来计时。
6、中国是最早使用四舍五入法进行计算的国家。
7、欧几里得最著名的著作《几何原本》是欧洲数学的基础,提出五大公设,发展为欧几里得几何,被广泛的认为是历史上最成功的教科书。
8、中国南北朝时代南朝数学家、天文学家、物理学家祖冲之把圆周率数值推算到了第7位数。
9、荷兰数学家卢道夫把圆周率推算到了第35位。
10、有“力学之父”美称的阿基米德流传于世的数学著作有10余种,阿基米德曾说过:给我一个支点,我可以翘起地球。这句话告诉我们:要有勇气去寻找这个支点,要用于寻找真理。
数学(mathematics或maths,来自希腊语,“máthēma”;经常被缩写为“math”),是研究数量、结构、变化、空间以及信息等概念的一门学科,从某种角度看属于形式科学的一种。
在人类历史发展和社会生活中,数学也发挥着不可替代的作用,也是学习和研究现代科学技术必不可少的基本工具。
4.天文小知识
口径(即物镜之直径)是天文望远镜的绝对参数。
放大倍数=物镜焦距/目镜焦距(约为口径的毫米数),物镜焦距越长或目镜焦距越短,倍数就越高,但受口径限制,倍数太高就没有实际的效果了。一般放大倍数不大于口径毫米数的2倍。口径mm*0.2=有效最高倍数。
折射式使用方便,视野较大,星像明亮,维护方便,看行星好。
反射式无色差,口径越大获得越大的集光力,看星云好。
焦比F=焦距/口径(一般所说焦距即为物镜焦距)。
短焦距镜(小焦比,焦比<=6)适合观星云、寻慧星;
中焦距镜(中焦比,6<;焦比<=15)适合观测双星、聚星、变星和星团;
长焦距镜(大焦比,焦比>15)适合观测月亮和行星。
5.咨询几个有关宇宙天文学的小知识
其他的都是发射过人造卫星而已。
目前疑似有生命的就是火星月球表面温度-233~123℃。月球是实核。
鉴于星体三种性质的相互作用,形成偏心作用的势能(场)空间是“椭球体”。引力中心(0+)与椭球体几何中心(00)存在着一定距离(0+00),用相对性表示,存在相对因子|+η|=000+/R0。
“涡旋引力”方向(0+→00)(R0星系的平均半径)。同理,存在的斥力(电磁力)作用(与引力作用互为反对称)。
宇宙学家公布了星体“磁暴”图片,支持了电磁力场的存在,也就是说,在这个星系“椭球体”内同时存在的“涡旋辐射电磁场”,电磁力中心(0-)距椭球体几何中心(00),距离(000-),相对因子|-η|=(000-/R0)。
“涡旋电磁力”方向为反向的0-→00,00→0-中性粒子的中心在00处或许是宇宙学家们发现的“宇宙空洞”。
即|-η|=|+η|,有|+η|+|-η|=0,反映了中性力(光子力)场是引力粒子(正粒子)与电磁粒子(反粒子)的聚合交换处,宇宙学家公布了“背景辐射”支持了中性粒子“虫洞”的存在。
反映了“正反粒子的组合成为中性粒子”,外在“边界”中心处(又称拐点与奇点)。
边界(或中心)处正粒子势能与反粒子势力相互抵消零,成为中性粒子的势能。
用相对性结构(RELH)原理解释,边界存在于星系的椭球中心(R=0),边界(R=1),以及半中心(R=(1/2)i(1/2),势能值U=(1-η2)U0(η=0,1,(1/2)i(1/2))当η=0,1时,U=U0η=(1/2)i(1/2)时,U=(1/2)U0U0=Σm0r0(星系的总势能值:包含着:运动(公旋)能自旋能,振动能,辐射能)。
这里:η=(1/2)i(1/2)是什么意思,答:是星系(粒子)半衰期的能量。
“虫洞“在这里起了“奇点、拐点”作用(见(2010.5.14~17)在新浪博客LK*0570上发表《神奇的奇点拐点使用》,正反粒子在虫洞(奇点、拐点)的空间里,进行了粒子交换,改变了原有粒子性质。
但是,这个交换并不是直接进行,鉴于中性粒子在激发态时的不稳定性,它随机性地产生正、反、中性粒子(或反、正、中性粒子),与原有进来的反、正、中性(或正、反、中性)粒子结合,形成中性粒子,这个中性就是“光粒子”。
剩下的粒子性质与原有进来的粒子相反(相同),输出反性(同性)粒子。
中性粒子在这里是媒介质粒子,这就是量小理论的“四个生成元“理论。
过去科学家曾提出的“以太假设”也许出于此,由于没弄清三重性场的性质、作用,遭到遗弃,反映了科学的进步,在量子理论之前,根本不可能弄清中性场的性质、作用。
现在我们在量子理论,相对论的科学基础上,开始注意到了中性粒子“虫洞”作用。
“虫洞”不仅仅在“中心”,也在“边界”***着三大体系的粒子,通过“虫洞”(奇点、拐点)的交换,改变了原先粒子的“相互作用性质”或“相互作用”的区域。
限制了“引力在中心不是无限大”,“电磁力在边界不是无限发散”,引力子(正粒子)与电磁力(反粒子)质量各半,也就是说:同一个粒子同时存在着“正粒子、反粒子、中性粒子”作用的“三重性”。
同样,也就决定了空间同时存在三种不同性质的涡旋力中心场(0+,0-,00),因此“黑洞、虫洞、白洞”相互关联、相互制约、相互并存。
因此,当我们看到“黑洞”必定有相应的“白洞”,也必定有“虫洞”。如果这个星体(粒子)很小(很大),那么,(0+00,000-)距离也可以很小(很大),相对因子(η=ri/R)是一样的没有区别。
在宇宙(光世界)中,当我们看到星体(粒子)时,星体(粒子)势能空间足够圆,或周围的行星分布几近均匀,η的数值相对较小((0+0-)接近(到达不了)几何中心00),我们可以看到这颗星(粒子)的中心内,在有强大的吸引力(强力、超强力),另有相应的电磁斥力(弱力、超弱力)存在,这就是霍金所说的“黑洞不黑”。
当η的数值相对较大时,也就是说椭球极扁,我们可以分别看到单纯的引力(涡旋、辐射)中心“黑洞”,在另一边必定存在着单纯电磁场(涡旋、辐射)中心“白洞”。
在它们的距离(1/2)中心处,必定是中性中心“虫洞”可能是“宇宙空洞“。
”。
三洞“存在,推。
还没有评论,来说两句吧...