1、平均角加速度
转动刚体从瞬时t开始的角速度变化Δω与相应时间间隔Δt的比值称为平均角加速度,即α=Δω/Δt。
2、瞬时角加速度
若Δt→0,则这一比值就称为在瞬时t刚体转动的角加速度,又称瞬时角加速度,记为ε,即ε=limεm)(Δt→0=Δω/Δt=dω/dt)。
方向确定
平面运动下,角加速度——作为角速度的变化率——也可以类似的定义为一个标量。我们可以说一个运动是顺时针转动加速或者逆时针转动加速。
到了真实的三维空间,角速度的矢量性就有意义了。其矢量定义如下:
v=ω×OP(其中v,ω,OP均为矢量,中间乘号表示此处为向量积,不是数量积)。
上式每个物理量都应该有矢量符号。角加速度与加速度类似,就是角速度的变化率。由于角速度具有矢量性,角加速度也具有矢量性。
从运动学上我们就可以通过对上式求微商来得到角加速度的大小与方向。
即:a=α×OP(其中a,α,OP均为矢量,此处为向量积)。
写成标量形式:|a|=|α||OP|sinθ,即:|a|=|α|r。
一般情况下我们标量形式来进行计算,矢量形式则适合数学推导。
如果运动固定为圆周运动,r是一个常数,那么角加速度大小等于|a|/r,方向跟ω方向相同。
我们发现,二维平面的运动使得上述矢量叉乘的结果必然在垂直于该平面的方向,如果一个矢量的方向固定在某一直线上,那其表现也确实与标量很是类似。
角加速度和切向加速度的关系推导
角速度等于速度除以半径,w=v/R,v直接拿S对t求导就可以得出,角加速度等于角速度对时间的求导;
an是法向加速度,为an=V2/R,at就是切向加速度,就是S对时间的二次求导,令两者相等,可以求出时间。
线速度,角速度
由以上可推导出线速度
求线速度,除了可以用,也可推导出v=2πr/T(注:T为周期)=ωr=2πrn(注:n代表转速,n与T可以互相转换,公式为T=1/n),π代表圆周率。
同样的,求角速度可以用ω=弧度/t=2π/T=v/r=2πn。
其中S为弧长,r指半径,V为线速度,a为加速度,T为周期,ω为角速度(单位:rad/s)。
质点在以某点为圆心半径为r的圆周上运动,即质点运动时其轨迹是圆周的运动叫“圆周运动”。它是一种最常见的曲线运动。
例如电动机转子、车轮、皮带轮等都作圆周运动。圆周运动分为,匀速圆周运动和变速圆周运动(如:竖直平面内绳/杆转动小球、竖直平面内的圆锥摆运动)。
在圆周运动中,最常见和最简单的是匀速圆周运动(因为速度是矢量,所以匀速圆周运动实际上是指匀速率圆周运动)。
还没有评论,来说两句吧...