1994年,中国台湾生物学家李家维教授、研究生徐锦源经过长期观察和研究,首次在蜜蜂腹部发现“超顺磁铁”,证实蜜蜂依靠这种“超顺磁铁”导引,随着地球磁场的变化辨认方向。
徐锦源仔细观察了工蜂腹部一群细胞内的铁颗粒形成过程,又以40万电子伏电子显微镜观察这些铁颗粒。
经放大180万倍后,从绕射图谱与傅里叶转换计算,证实铁颗粒的核心处有近万个超顺磁铁粒子;粒子的直径为0.01微米,远小于任何已发现的单晶磁铁。
这是科学工作者首次在动物细胞内找到超顺磁铁,并明确了解其形成方式和位置。
虽然人类不能自我形容在变化磁场的感觉,但研究显示,人类身体的生理及行为很可能同样受到磁场的影响。
顺磁是指一般磁铁在外加磁场下,磁轴和外加磁场变为同向,且不再改变方向,除非再受到另一更强、不同向的磁场影响。
超顺磁铁在外加磁场下,也变为同向磁轴,不同的是它的粒子太小,外加磁场一旦消失,即开始变向,回复原来的状态,对外在磁场的敏感度大于顺磁,故称为“超顺磁铁”。
工业界认为,超顺磁铁是未来人类社会相当重要的材料。
55灭绝
灭绝是指当其成员全部死亡或被杀后一个物种完全消失。
作为自然选择的一部分,物种灭绝在地球历史中始终进行着。
但在现代人类对环境过度的压力下,植物、脊椎动物和无脊椎动物正在史无前例地以每年数千种的速度灭绝,特别是在热带雨林地区,还有成千上万种物种受威胁或濒危。
超顺磁性物质有哪些
磁性材料是指强磁性物质,是古老而用途十分广泛的功能材料,而物质的磁性早在3000年以前就被人们所认识和应用,例如中国古代用天然磁铁作为指南针。
现代磁性材料已经广泛的用在我们的生活之中,例如将永磁材料用作马达,应用于变压器中的铁心材料,作为存储器使用的磁光盘,计算机用磁记录软盘等。
磁性材料与信息化、自动化、机电一体化、国防、国民经济的方方面面紧密相关。而通常认为,磁性材料是指由过渡元素铁、钴、镍及其合金等能够直接或间接产生磁性的物质。
磁性材料按磁化后去磁的难易可分为软磁性材料和硬磁性材料。磁化后容易去掉磁性的物质叫软磁性材料,不容易去磁的物质叫硬磁性材料。一般来讲软磁性材料剩磁较小,硬磁性材料剩磁较大。
磁性材料特性
1、磁性材料的磁化曲线
磁性材料是由铁磁性物质或亚铁磁性物质组成的,在外加磁场H作用下,必有相应的磁化强度M或磁感应强度B,它们随磁场强度H的变化曲线称为磁化曲线(M~H或B~H曲线)。
磁化曲线一般来说是非线性的,具有2个特点:磁饱和现象及磁滞现象。
即当磁场强度H足够大时,磁化强度M达到一个确定的饱和值Ms,继续增大H,Ms保持不变;以及当材料的M值达到饱和后,外磁场H降低为零时,M并不恢复为零,而是沿MsMr曲线变化。
材料的工作状态相当于M~H曲线或B~H曲线上的某一点,该点常称为工作点。
2.软磁材料的常用磁性能参数
饱和磁感应强度Bs:其大小取决于材料的成分,它所对应的物理状态是材料内部的磁化矢量整齐排列。
剩余磁感应强度Br:是磁滞回线上的特征参数,H回到0时的B值。
矩形比:Br∕Bs
矫顽力Hc:是表示材料磁化难易程度的量,取决于材料的成分及缺陷(杂质、应力等)。
磁导率μ:是磁滞回线上任何点所对应的B与H的比值,与器件工作状态密切相关。
初始磁导率μi、最大磁导率μm、微分磁导率μd、振幅磁导率μa、有效磁导率μe、脉冲磁导率μp。
居里温度Tc:铁磁物质的磁化强度随温度升高而下降,达到某一温度时,自发磁化消失,转变为顺磁性,该临界温度为居里温度。它确定了磁性器件工作的上限温度。
损耗P:磁滞损耗Ph及涡流损耗PeP=Ph+Pe=af+bf2+cPe∝f2t2/,ρ降低,降低磁滞损耗Ph的方法是降低矫顽力Hc;降低涡流损耗Pe的方法是减薄磁性材料的厚度t及提高材料的电阻率ρ。
在自由静止空气中磁芯的损耗与磁芯的温升关系为:总功率耗散(mW)/表面积(cm2)。
3.软磁材料的磁性参数与器件的电气参数之间的转换。
在设计软磁器件时,首先要根据电路的要求确定器件的电压~电流特性。
器件的电压~电流特性与磁芯的几何形状及磁化状态密切相关。
设计者必须熟悉材料的磁化过程并掌握材料的磁性参数与器件电气参数的转换关系。
设计软磁器件通常包括三个步骤:正确选用磁性材料;合理确定磁芯的几何形状及尺寸;根据磁性参数要求,模拟磁芯的工作状态得到相应的电气参数。
还没有评论,来说两句吧...