向量空间的定义是线性代数的中心内容和基本概念之一。在解析几何里引入向量概念后,使许多问题的处理变得更为简洁和清晰,在此基础上的进一步抽象化。
线性空间是在考察了大量的数学对象(如几何学与物理学中的向量,代数学中的n元向量、矩阵、多项式,分析学中的函数等)的本质属性后抽象出来的数学概念,近代数学中不少的研究对象,如赋范线性空间、模等都与线性空间有着密切的关系。
它的理论与方法已经渗透到自然科学、工程技术的许多领域。
哈密顿首先引进向量一词,并开创了向量理论和向量计算。
格拉斯曼最早提出多维欧几里得空间的系统理论。
1844至1847年,他与柯西分别提出了脱离一切空间直观的、成为一个纯粹数学概念的、抽象的n维空间。
若V和W都是域F上的向量空间,可以设定由V到W的线性变换或“线性映射”。
这些由V到W的映射都有共同点,就是它们保持总和及标量商数。
这个集合包含所有由V到W的线性映射,以L来描述,也是一个域F上的向量空间。
当V及W被确定后,线性映射可以用矩阵来表达。
同构是一对一的一张线性映射。
如果在V和W之间存在同构,我们称这两个空间为同构;域F上每一n维向量空间都与向量空间F同构。
一个在F场的向量空间加上线性映射就可以构成一个范畴,即阿贝尔范畴。
向量的发展及应用
从数学发展史来看,历史上很长一段时间,空间的向量结构并未被数学家们所认识,直到19世纪末20世纪初,人们才把空间的性质与向量运算联系起来,使向量成为具有一套优良运算通性的数学体系.向量能够进入数学并得到发展,首先应从复数的几何表示谈起。
在物理中,向量就是矢量,是物理学中最重要的物理量。
物理中的矢量是向量的原型,向量及其运算是物理中矢量及其运算的抽象。
因此,向量在物理中有广泛应用是不言而喻的。
向量与物理学中的力学、运动学等有着天然的联系。
多维线性空间是什么
由于泛函分析源自研究各种函数空间,在函数空间里函数列的收敛有不同的类型(譬如逐点收敛,一致收敛,弱收敛等等),这说明函数空间里有不同的拓扑。
而函数空间一般是无穷维线性空间。
所以抽象的泛函分析研究的是一般的(无穷维的)带有一定拓扑的线性空间。
拓扑线性空间的定义就是一个带有拓扑结构的线性空间,使得线性空间的加法和数乘都是连续映射的空间。
这是最常见,应用最广的一类拓扑线性空间。
比如有限闭区间上的连续函数空间,有限闭区间上的k次可微函数空间。
或者对于每个实数p,如果p≥1,一个巴拿赫空间的例子是“所有绝对值的p次方的积分收敛的勒贝格可测函数”所构成的空间。
(参看Lp空间)。
在巴拿赫空间中,相当部分的研究涉及到对偶空间的概念,即巴拿赫空间上所有连续线性泛函所构成的空间。对偶空间的对偶空间可能与原空间并不同构,但总可以构造一个从巴拿赫空间到其对偶空间的对偶空间的一个单同态。
微分的概念可以在巴拿赫空间中得到推广,微分算子作用于其上的所有函数,一个函数在给定点的微分是一个连续线性映射。
最基本的算子是保持拓扑线性空间结构的算子,称作线性算子。
如果像空间是拓扑线性空间所在的数域(特别的,一个一维拓扑线性空间)那么这样的算子成为线性泛函。
在线性算子的理论中有几个非常基本而重要的定理。
1.一致有界定理(亦称共鸣定理),该定理描述一族有界算子的性质。
2.罕-巴拿赫定理(Hahn-BanachTheorem)研究了如何将一个算子保范数地从一个子空间延拓到整个空间。另一个相关结果是对偶空间的非平凡性。
3.开映射定理和闭图像定理。
4.谱定理包括一系列结果,其中最常用的结果给出了希尔伯特空间上正规算子的一个积分表达,该结果在量子力学的数学描述中起到了核心作用。
十九世纪以来,数学的发展进入了一个新的阶段。
这就是,由于对欧几里得第五公设的研究,引出了非欧几何这门新的学科;对于代数方程求解的一般思考,最后建立并发展了群论;对数学分析的研究又建立了集合论。
这些新的理论都为用统一的观点把古典分析的基本概念和方法一般化准备了条件。
这时候,函数概念被赋予了更为一般的意义,古典分析中的函数概念是指两个数集之间所建立的一种对应关系。
现代数学的发展却是要求建立两个任意集合之间的某种对应关系。
由于分析学中许多新部门的形成,揭示出分析、代数、集合的许多概念和方法常常存在相似的地方。
比如,代数方程求根和微分方程求解都可以应用逐次逼近法,并且解的存在和唯一性条件也极其相似。
这种相似在积分方程论中表现得就更为突出了。
泛函分析的产生正是和这种情况有关,有些乍看起来很不相干的东西,都存在着类似的地方。
因此它启发人们从这些类似的东西中探寻一般的真正属于本质的东西。
非欧几何的确立拓广了人们对空间的认知,n维空间几何的产生允许我们把多变函数用几何学的语言解释成多维空间的映像。
这样,就显示出了分析和几何之间的相似的地方,同时存在着把分析几何化的一种可能性。
这种可能性要求把几何概念进一步推广,以至最后把欧氏空间扩充成无穷维数的空间。
20世纪初,瑞典数学家弗列特荷姆和法国数学家阿达玛发表的著作中,出现了把分析学一般化的萌芽。
随后,希尔伯特和海令哲来创了“希尔伯特空间”的研究。
到了二十年代,在数学界已经逐渐形成了一般分析学,也就是泛函分析的基本概念。
研究无限维线性空间上的泛函数和算子理论,就产生了一门新的分析数学,叫做泛函分析。
在二十世纪三十年代,泛函分析就已经成为数学中一门独立的学科了。
泛函分析目前包括以下分支:
软分析(softanalysis),其目标是将数学分析用拓扑群、拓扑环和拓扑向量空间的语言表述。
巴拿赫空间的几何结构,以JeanBourgain的一系列工作为代表。
非交换几何,此方向的主要贡献者包括AlainConnes,其部分工作是以GeorgeMackey的遍历论中的结果为基础的。
与量子力学相关的理论,狭义上被称为数学物理,从更广义的角度来看,如按照IsraelGelfand所述,其包含表示论的大部分类型的问题。
还没有评论,来说两句吧...