超疏水材料:
1、2014年墨尔本的服装技术公司Threadsmiths,发明了一种仿荷叶超疏水的T恤。这种T恤可以经过80次以上的洗涤并且保持超疏水的性质。他们利用纳米技术对棉纤维进行重新编织使其具有防水性能。
2、土耳其-德国联合研究团队以滤纸为多孔基底,通过单面修饰聚二甲硅氧烷(PDMS)/无机微纳颗粒(粒径范围从数纳米到数十微米),简便构筑了具有超疏水/亲水显著润湿性差异的Janus纸。
这种纸具有优异的化学稳定性、机械稳定性和柔韧性,同时保持良好的透气性,在伤口处理等方面具有较大的应用前景。
从固体表面的静态接触角来看,决定固体表面亲疏液性的关键在于材料表面的化学组成,而表面的粗糙程度只是增强了这一效果。
所以在构建超疏水固体表面时,一般是在低表面能表面上构建粗糙表面或者在粗糙表面上修饰低表面能的物质。
而人们首先从制备低表面能的物质开始研究,发现目前表面能最低的固体材料为硅氧烷和含氟材料。其中以含氟材料最为优秀,其表面能比硅氧烷低10mN/m左右,而且氟是所有元素中除氢元素之外原子半径最小的元素。
其电负性强,氟碳键键能大,内聚能低,热稳定性和化学稳定性高。
具有耐热、耐候、耐化学介质性优良、折射率低等特性。
当材料表面—CF3基团以六边形紧密有序排列堆积时,固体表面具有最低的表面张力6.7mJ/m2,因此,目前制备具有低表面能的材料大都是以含氟材料为主。
除此之外,人们也开始尝试采用不同的方法控制表面结构来制备超疏水涂层。目前,常用的有层层自组装法、物理或者化学气相沉积法、刻蚀法、模板法、静电喷涂法以及溶胶凝胶法等。
超疏水性是一种特殊的润湿性,一般指水滴在固体表面呈球状,接触角大于150度,滚动角小于10度。
材料表面能(材料表面分子比内部分子多出的能量)越低,疏水性越好,且当低表面能材料具有微观粗糙结构时,水滴与材料之间会形成一层空气膜,阻碍水对材料表面的润湿,从而形成超疏水状态。
超疏水表面最初的灵感来源于“荷叶效应”。20世纪90年代,德国植物学家波恩大学Barthlott等揭示了荷叶表面的结构,发现荷叶的“自洁性”源于其表面的微纳结构。
荷叶表面具有微米级的乳突,乳突上有纳米级的蜡晶物质,这种微-纳米级的粗糙结构可以大幅度提高水滴在其上的接触角,导致水滴极易滚落。
因为水滴在超疏水材料表面滚落时可带走污染物,使材料表面保持清洁。因此超疏水材料具有防水、防腐蚀、防冰以及防附着等多重特性。
荷叶表面除具有超疏水特性——“荷叶效应”之外,还呈现荷叶表面超疏水、底面亲水的(Janus)润湿性特性。模拟荷叶表面这种特性进行具有显著润湿性差异Janus膜表面构筑,目前研究开展的还相对较少。
超疏水涂层
超疏水表面因具有防污自清洁的性能,在许多高新技术领域和日常生活中有着广泛的应用前景,已经成为近年来表面功能材料研究的热点。
而且,随着超疏水表面制备及应用研究的深入,对其表面性能有了更多的要求,具有多种功能的超疏水表面受到越来越多的关注。
本论文在深入调研相关文献的基础上,分析了目前超疏水表面在制备和应用过程中存在的问题,研究了碳纳米管和聚合物复合材料的多功能超疏水性能,制备了超疏油和功能化超疏油表面,并对影响表面性能的因素进行了系统研究,取得了以下主要成果:。
1.利用喷涂方法制备了超疏水的纯碳纳米管薄膜,考察了外部刺激对碳纳米管润湿性的影响,通过紫外光照射(高温处理)和空气放置,在其表面实现了由超疏水到超亲水的可逆转变,并对润湿性转换的影响因素和控制机理进行了研究。
利用活性可控自由基聚合合成了功能性聚合物接枝的碳纳米管,接枝聚苯乙烯得到了透明的超疏水碳纳米管薄膜,接枝两性嵌段共聚物得到了具有滚动/粘附转换性能的超疏水碳纳米管薄膜,并分别探讨了薄膜透明性和滚动/粘附转换性能与超疏水之间的关系。
2.利用糠酮树脂与聚四氟乙烯制备了基体结合力强、环境稳定性好的超疏水聚合物复合涂层,考察了涂层的表面结构和成分与润湿性能的关系,研究了制备方法和固化工艺对涂层各项性能的影响。
利用聚合物和氧化锌纳米粒子制备了多功能化的超疏水复合涂层,通过紫外光和加热处理,在同一表面实现超疏水/超亲水转换和超疏水状态下的滚动/粘附转换,探讨了润湿性和粘附性转换的影响因素和控制机理。
3.制备了氟化二氧化钛、十六酸铜以及全氟辛酸铜三种不同的超疏油表面,分析表征了三种表面的疏油性能,考察了表面结构和成分与疏油性能的关系,找出了制备超疏油表面的关键,并且所得超疏油表面具有易修复的特性。
利用简单的化学刻蚀方法,在铝基表面构筑了微纳等级粗糙的结构,结合低表面能材料,获得了稳定的超疏油铝基表面,通过改变刻蚀条件,控制凹形结构的形成和纳米鳞片的出现,探讨不同尺度的结构对疏油性能的影响。
4.利用层层自组装方法在棉布和织构化的铝基表面上沉积了聚电解质多层薄膜,通过薄膜表面的离子交换同时调控其疏水疏油性能,考察了聚电解质层数和吸附离子对表面润湿性能的影响,实现了超疏油和超亲油之间的快速可逆转换。
利用具有特殊化学结构的聚合物和纳米粒子,制备了超亲水-超疏油的纳米复合涂层,探讨了涂层的亲水疏油机理,并研究了它们在防油污、自清洁以及油水分离等领域的性能和应用。
还没有评论,来说两句吧...