增量型旋转编码器和绝对值旋转编码器增量型旋转编码器轴的每圈转动,增量型编码器提供一定数量的脉冲。
周期性的测量或者单位时间内的脉冲计数可以用来测量移动的速度。
如果在一个参考点后面脉冲数被累加,计算值就代表了转动角度或行程的参数。
双通道编码器输出脉冲之间相差为90o。
能使接收脉冲的电子设备接收轴的旋转感应信号,因此可用来实现双向的定位控制;
另外,三通道增量型旋转编码器每一圈产生一个称之为零位信号的脉冲。
增量型绝对值旋转编码器绝对值编码器为每一个轴的位置提供一个独一无二的编码数字值。
特别是在定位控制应用中,绝对值编码器减轻了电子接收设备的计算任务,从而省去了复杂的和昂贵的输入装置:而且,当机器合上电源或电源故障后再接通电源,不需要回到位置参考点,就可利用当前的位置值。
单圈绝对值编码器把轴细分成规定数量的测量步,最大的分辨率为13位,这就意味着最大可区分8192个位置+多圈绝对值编码器不仅能在一圈内测量角位移,而且能幸,J用多步齿轮测量圈数。
多圈的圈数为12位,也就是说最大4096圈可以被识别。
总的分辨率可达到25位或者33,554,432个测量步数。
并行绝对值旋转编码器传输位置值到估算电子装置通过几根电缆并行传送。
假设串行绝对值编码器,输出数据可以用标准的接口和标准化的协议传送,同时在过去点对点的连接实现了串行数据传送:今天现场总线系统的使用正不断增加。
绝对式编码器和增量式编码器区别是什么
这种编码器的输出方式为长线驱动(linedriver),其中A+A-B+B-Z+Z-为输出的信号线,增量编码器给出两相方波,它们的相位差90°(电气上),通常称为A通道和B通道。
其中一个通道给出与转速有关的信息,与此同时,通过两个。
通道信号进行顺序对比,得到旋转方向的信息。还有一个特殊信号称为Z或零通道,该通道给出编码轴的绝对零位,此信号是一个方波与A通道方波的中心线重合。
A+,A-为互补信号,B+,B-为互补信号,Z+,Z-为互补信号;长线驱动线路用于电气受干扰或编码器与接收系统之间是长距离的工作环境。
数据的发送和接收在两个互补的通道中进行。
所以,干扰受到抑制(干扰是由电缆或相邻设备引起的)。
这种干扰叫做“共模干扰”,因为他们的产生原于一个公共点:
系统接地点。
此外,长线驱动发送和接收信号是以“差动方式”进行的。
或者说,它的工作原理是在互补通道间的电压差上传达。
因此可以有效地抑制对它的共模干扰。
这种传送方式在采用5伏电压时可认为与RS422兼容,而且供电电源可达24伏特。
使用线性驱动编码器时,需要和线性的计数模块相连接,运动控制卡(PG卡),在控制卡上直接由相对应的接口。
编码器的分类规则:
1、按码盘的刻孔方式不同分类
(1)增量型:就是每转过单位的角度就发出一个脉冲信号(也有发正余弦信号,。
然后对其进行细分,斩波出频率更高的脉冲),通常为A相、B相、Z相输出,A相、B相为相互延迟1/4周期的脉冲输出,根据延迟关系可以区别正反转,而且通过取A相、B相的上升和下降沿可以进行2或4倍频;Z相为单圈脉冲,即每圈发出一个脉冲。
(2)绝对值型:就是对应一圈,每个基准的角度发出一个唯一与该角度对应二进制的数值,通过外部记圈器件可以进行多个位置的记录和测量。
2、按信号的输出类型分为:电压输出、集电极开路输出、推拉互补输出和长线驱动输出。
3、以编码器机械安装形式分类
(1)有轴型:有轴型又可分为夹紧法兰型、同步法兰型和伺服安装型等。
(2)轴套型:轴套型又可分为半空型、全空型和大口径型等。
4、以编码器工作原理可分为:光电式、磁电式和触点电刷式。
还没有评论,来说两句吧...