三维激光扫描是一种通过激光测距原理获取物体表面点云数据的技术。
三维激光扫描的基本原理
激光发射
三维激光扫描系统首先通过激光发射器发射一束激光光束。这个激光光束可以是可见光激光或红外激光,具体取决于应用需求。
光束照射目标表面
激光光束照射在目标表面上。当激光光束击中目标表面时,光线会被目标表面反射。
接收反射光
传感器系统在设备上装有接收器,用于接收被目标表面反射回来的激光光束。这个接收器通常也包含一个接收光电元件(例如光电二极管)。
测量光的飞行时间
系统测量激光光束从发射器发射到目标表面反射回接收器的总时间,即光的飞行时间。这个时间可以用来计算激光光束在空气中传播的距离。
计算距离
利用光的飞行时间和光速,系统可以计算出激光光束传播的距离。这个距离就是激光光束从设备发射到目标表面反射回来的距离。
生成点云数据
通过连续的激光光束发射和接收,系统可以获取目标表面上许多点的距离数据。这些数据被组织成一个点云,其中每个点的坐标表示空间中的一个位置。
数据处理和三维建模
采集到的点云数据可以通过计算机算法进行处理,以生成目标的三维模型。这包括去除噪声、点云配准、重建曲面等步骤,最终得到高精度的三维模型。
总体而言,三维激光扫描利用激光光束的测距原理,通过测量光的飞行时间来计算目标表面上各个点的距离,从而获取目标的准确三维坐标信息。这项技术在制造、建筑、文物保护等领域有广泛的应用。
三维扫描技术的工作原理是
三维扫描仪技术原理利用两组相机对被扫描物体进行拍照,再通过计算机技术进行数据处理,以获得被扫描物体的三维信息。
仪器上的两组相机可以分别获得投影到被扫描对象上的激光,该激光随着对象形状发生变形,由于这两组相机事先经过准确标定,就可以通过计算获得激光线所投影的线状三维信息。
仪器根据固定在被检测物体表面的视觉标记点来确定扫描仪在扫描过程中的空间位置,这些空间位置被用于空间位置转换。
利用第1步获得的线状三维信息和第2步的扫描仪空间相对位置,当扫描仪移动时,不断获取激光所经过位置的三维信息,从而形成连续的三维数据。
三维扫描仪特点
非接触扫描:利用照相原理,进行非接触式光学扫描获得物体表面三维数据。
扫描速度极快:独特的面扫描方式,速度极快。
高精度:利用独特的测量技术,可获得非常高的测量精度。
高密度采样点:高性能测量头可以一次获得极高密度的点云数据。
便携式设计:所有部件灵活可靠、方便移动,可根据现场实际情况进行测量。
扫描方式灵活:支持标志点拼接和转台拼接。通过标志点的拼接可以合成多次测量的结果,从而实现超大面积扫描.利用转台拼接可以灵活转动物体,从而最大程度减少测量的死角。
还没有评论,来说两句吧...