最近在做多旋翼的项目,然后就对三轴加速度计和陀螺仪感兴趣,网上也找了一些资料。
大部分也是英文,就copy下来。
【其实我想把所有以后的项目全部放到GItHub上面去,现在就先放一个连接好啦。
https://github.com/kangschampagne】
下面就开始整合资料。
加速度计和陀螺仪以及组合IMU设备(惯性量单元)。
Accelerometer(加速计)&GyroTutorialbyGadgetGangster。
这一篇是很好的入门资料,详细讲解了加速度计和陀螺仪的数学模型和基本算法,以及如何融合这两者,侧重算法、思想的讨论。以下是翻译。
介绍
本指南旨在向兴趣者介绍惯性MEMS(微机电系统)传感器,特别是加速度计和陀螺仪以及其他整合IMU(惯性测量单元)设备。
IMU单元例子:上图中MCU顶端的ACCGyro6DOF,名为USBThumb,支持USB/串口通信。
在这篇文章中我将概括这么几个基本并且重要的话题:
-加速度计(accelerometer)检测什么。
-陀螺仪(gyroscope,也称作gyro)检测什么。
-如何将传感器ADC读取的数据转换为物理单位(加速度传感器的单位是g,陀螺仪的单位是度/秒)。
-如何结合加速度传感器和陀螺仪的数据以得到设备和地平面之间的倾角的准确信息。
在整篇文章中我尽量将数学运算降低到最少。
如果你知道什么是正弦、余弦、正切函数,那无论你的项目使用哪种平台你应该都会明白和运用这篇文章中的思想,这些平台如Arduino、Propeller、BasicStamp、Ateml芯片、PIC芯片等等。
总有些人认为使用IMU单元需要复杂的数学运算(复杂的FIR或IIR滤波,如卡尔曼滤波,Parks-McClellan滤波等)。
你如果研究这些会得到很棒且很复杂的结果。
我解释事情的方式,只需要基本的数学。
我非常坚信简单的原则。
我认为一个简单的系统更容易操作和监控,另外许多嵌入式设备并不具备能力和资源去实现需要进行矩阵运算的复杂算法。
我会用我设计的一个新IMU模块——Acc_GyroAccelerometer+GyroIMU作为例子。在下面的例子中我们会使用这个设备的参数。用这个模块作为介绍非常合适,因为它由3个设备组成:
-LIS331AL(datasheet)–3轴2G模拟加速度计。
-LPR550AL(datasheet)–双轴(俯仰、翻滚)500°/s加速度传感器。
-LY550ALH(datasheet)–单轴(偏航)陀螺仪。
最后这个设备在这篇介绍中不使用,不过他在DCMMatriximplementation中有重要作用它们一起组成了一个6自由度的惯性测量单元。
这是个花哨的名字!然而,在花哨的名字后面是个非常有用的设备组合,接下来我们会详细介绍之。
陀螺仪是什么模块的
1.美国
美国的光纤陀螺研制单位有:利顿公司、霍尼威尔公司、德雷泊实验室公司、斯坦福大学以及光纤传感技1术公司等。
(1)利顿公司研制的光纤陀螺
利顿公司的光纤陀螺技术在低、中精度应用领域已经成熟,并且已经产品化。
1988年研制出SCIT实验惯性装置,惯件器件是光纤陀螺和硅加速度计。
1989年公司研制的CIGIF论证系统飞行试验装置。
1991/1992年研制出用于导弹和姿态与航向参考系统的惯性测量系统。
1992年研制出GPS/INS组合导航系统。
(2)霍尼韦尔公司的集成光学光纤陀螺
霍尼韦尔公司研制的第一代高性能的干涉仪式光纤陀螺采用的是Ti内扩散集成光学相位调制器。
采用的其他器件还有0.83um宽带光源、光电探测器/前置放大器模块、保偏光纤偏振器、两个保偏光纤熔融型耦合器以及由1km保偏光纤构成的传感环圈。
为了满足惯性级光纤陀螺的要求,霍尼韦尔公司研制的第二代高性能干涉仪式光纤陀螺采用了集成光学多功能芯片技术以及全数字闭环电路。
(3)美国德雷珀实验室
美国德雷珀实验室从1978年起为JPL空间应用研制高精度光纤陀螺,曾研制过谐振腔。
式光纤陀螺,研制了9年,由于背向散射误差限制了精度,后来改为采用干涉仪式方案。
在研制干涉仪式光纤陀螺的过程中,采用了三大技术措施:
a.把光源、探测器和前置放大器做成一个模块;
b.光纤传感环圈结构影响精度很大,采用了无骨架绕制光纤环圈的技术途径;
c.多功能集成光学器件模块,包括了所有其余的光纤陀螺的光纤器件。
德雷珀实验室的研究人员认为:目前0.01°/h的干涉仪式光纤陀螺成本较高,需要研制自动生产线,降低成本,保证质量。
对于今后的发展问题,德雷珀实验室的研究人员认为:
a.惯性级的干涉仪式光纤陀螺仪,可以取代动力调谐陀螺仪,并逐渐取代激光陀螺仪;
b.惯性级干涉仪式光纤陀螺仪的难点是必须采用1km长度的保偏光纤,如果改用谐振腔式光纤陀螺仪方案,则长度可减为10m左右的光纤。
为此谐振腔式光纤陀螺仍在作为研制方向,使光纤陀螺仪小型化的谐振腔式光纤陀螺的难点在于:控制电路比干涉仪式光纤陀螺复杂。
随着ASIC技术的发展,将来有可能得到满意的解决,使谐振腔式光纤陀螺成为产品。
采用干涉仪式和谐振腔式混合方案的光纤陀螺仪具有良好的发展前景。
2.日本
日本研制光纤陀螺的单位有东京大学尖端技术室、日立公司、住友电工公司、三菱公司、日本航空电子工业公司。
日本的干涉式光纤陀螺仪已经完成了基础研究,正进入实用化阶段。偏值漂移已经达到。东京大学进行研究的谐振腔光纤陀螺仪取得了很大进展。
日立公司研制用于汽车导航系统的光纤陀螺,1991年用于日产汽车。
在日本,光纤陀螺作为汽车的旋转速率传感器已进入市场。
利用光纤陀螺仪进行导航时,用车轮转速计传感器测移动距离,用光纤陀螺测量车体的回转,同时采用图象匹配、GPS系统等配合计算汽车的位置和方位,显示在信息处理器上。
3.俄罗斯
俄罗斯的光纤陀螺有全光纤型和集成光学型。全光纤型采用的是光纤技术,即所有的光纤器件都做在同一根光纤上。
Fizoptika公司研制的光纤陀螺已经商品化,产品型号有:VG949、VG941B等。
4.中国
我国也非常重视光纤陀螺技术的研究,上世纪80年代后,许多大学和研究所相继启动光纤陀螺的研发项目,如航天工业总公司所属13所和上海803所、北京航空航天大学、清华大学、浙江大学等,也取得了一定的成绩,如1996年,航天总公司13所成功研制采用Y分支多功能集成光路、零偏稳定性达全数字闭环保偏光纤陀螺,浙江大学和Honeywell公司几乎同时发现利用消偏可提高精度等。
国内的光纤陀螺研制水平虽然与国际水平有一定距离,但已具备或接近中、低精度要求,并在近年来开始尝试产业化。
我国海军新型导弹配光纤陀螺仪发射试验3发3中,也标志我国的光纤陀螺仪技术取得了很大的成功。
还没有评论,来说两句吧...