激光(Laser),它指通过受激辐射放大和必要的反馈,产生准直、单色、相干的光束的过程及仪器.而基本上,产生激光需要"共振腔"(resonator)、"增益介质"(gainmedium)以及"激发来源"(pumpingsource)这三个要素.
原理
原子的运动状态可以分为不同的能级,当原子从高能级向低能级跃迁时,会释放出相应能量的光子(所谓自发辐射).同样的,当一个光子入射到一个能级系统并为之吸收的话,会导致原子从低能级向高能级跃迁(所谓受激吸收);然后,部分跃迁到高能级的原子又会跃迁到低能级并释放出光子(所谓受激辐射).这些运动不是孤立的,而往往是同时进行的.当我们创造一种条件,譬如采用适当的媒质、共振腔、足够的外部电场,受激辐射得到放大从而比受激吸收要多,那么总体而言,就会有光子射出,从而产生激光.
分类
根据产生激光的媒质,可以把激光器分为液体激光器、气体激光器和固体激光器等.而现在最常见的半导体激光器算是固体激光器的一种.
构成
激光器大多由激励系统、激光物质和光学谐振腔三部分组成.激励系统就是产生光能、电能或化学能的装置.目前使用的激励手段,主要有光照、通电或化学反应等.激光物质是能够产生激光的物质,如红宝石、铍玻璃、氖气、半导体、有机染料等.光学谐振控的作用,是用来加强输出激光的亮度,调节和选定激光的波长和方向等.
应用
激光应用很广泛,主要有fibercommunication,激光测距、激光切割、激光武器、激光唱片等等。
历史
1958年,美国科学家肖洛和汤斯发现了一种神奇的现象:当他们将内光灯泡所发射的光照在一种稀土晶体上时,晶体的分子会发出鲜艳的、始终会聚在一起的强光.根据这一现象,他们提出了"激光原理",即物质在受到与其分子固有振荡频率相同的能量激励时,都会产生这种不发散的强光--激光.他们为此发现了重要论文.
肖洛和汤斯的研究成果发表之后,各国科学家纷纷提出各种实验方案,但都未获成功.1960年5月15日,美国加利福尼亚州休斯实验室的科学家梅曼宣布获得了波长为0.6943微米的激光,这是人类有史以来获得的第一束激光,梅曼因而也成为世界上第一个将激光引入实用领域的科学家.
1960年7月7日,梅曼宣布世界上第一台激光器由诞生,梅曼的方案是,利用一个高强闪光灯管,来刺激在红宝石色水晶里的铬原子,从而产生一条相当集中的纤细红色光柱,当它射向某一点时,可使其达到比太阳表面还高的温度.
前苏联科学家H.Γ.巴索夫于1960年发明了半导体激光器.半导体激光器的结构通常由P层、N层和形成双异质结的有源层构成.其特点是:尺寸小,耦合效率高,响应速度快,波长和尺寸与光纤尺寸适配,可直接调制,相干性好.
光子:原始称呼是光量子(lightquantum),电磁辐射的量子,传递电磁相互作用的规范粒子,记为γ.其静止质量为零,不带电荷,其能量为普朗克常量和电磁辐射频率的乘积,E=hv,在真空中以光速c运行,其自旋为1,是玻色子。
电子:静止质量为9.109×10^-31kg、电荷为-1.602×10^-19C的稳定基本粒子.在一般情况下是指带负电荷的负电子.其反粒子是带正电荷的正电子.
分子:化学上,分子是物质组成的一种基本单位名称.
离子:带有电荷的原子或分子,或组合在一起的原子或分子团.带正电荷的离子称“正离子”,带负电荷的离子称“负离子”.
原子:组成元素的最小单元.由原子核和围绕原子核运动的电子组成.
粒子:粒子(particle)指能够以自由状态存在的最小物质组分.最早发现的粒子是电子和质子,1932年又发现中子,确认原子由电子、质子和中子组成,它们比起原子来是更为基本的物质组分,于是称之为基本粒子.以后这类粒子发现越来越多,累计已超过几百种,且还有不断增多的趋势;此外这些粒子中有些粒子迄今的实验尚未发现其有内部结构,有些粒子实验显示具有明显的内部结构.看来这些粒子并不属于同一层次,因此基本粒子一词已成为历史,如今统称之为粒子.
半导体激光器的工作原理详解
用于光通信的激光器,以半导体激光器为主,主要分两种类型,边发射与面发射。
▲边发射
▲面发射
VCSEL
VCSEL,叫垂直腔面发射
?垂直腔,两组布拉格光栅做发射腔
▲VCSEL历史
▲VCSEL应用
▲典型氧化物限制结构
这个限制,一是限制光场,二是降低阈值电流
FP与DFB
FP与DFB都是边发射激光器,FP结构的激光器,是通过两侧反射镜做光反馈,DFB是通过光栅做光反馈。
▲FP的反射腔
▲DFB的布拉格反射
▲FP无需刻蚀光栅,工艺简单
▲DFB需要刻蚀光栅,工艺复杂
▲FP是多纵模激光器
▲DFB是单纵模激光器
DFB的RWG与BH结构
DFB激光器应用广泛,常用的RWG结构,与BH结构。
▲紫色是波导结构
RWG,脊波导,上图紫色是波导设计,工艺简单。
BH,异质掩埋,掩埋的是有源层,工艺复杂
为什么要掩埋?
RWG结构的有源层是下图这样
脊型波导,再通过两侧折射率差,将光场压缩至椭圆形,下图。
掩埋结构,把有源层做窄
那它的光场压下来,就是接近于圆形
BH结构的圆形光斑,非常适用于通信,与光纤耦合效率高,功率大,阈值电流低(功耗低)。
EML
EML,是DFB结构与EAM电吸收调制器的集成器件。
半导体有激子吸收效应,也就是可以吸收光,那DFB的光,一会儿吸收一会儿不吸收,对外界看起来就是1,0的区别。
▲EML▼DML
电吸收调制器原理
外加电场后,能带发射概念
吸收波长偏移,产生调制效果
DBR激光器
DBR激光器与DFB类似,只一半光栅,可以通过电流调整相位,也就是说可以通过电流的大小,调谐输出波长。
可调谐激光器
可调谐激光器,就是能调输出波长,上一类的DBR是可以做调谐的。
最简单的一种,就是温度调谐,DFB激光器可以随温度变化而变化,那让他工作在不同温度,就可以实现不同波长。
把激光器级联起来,就可以调更多的波长了的。
另一种,就是双臂结构,设计俩激光器(各种类型都行),用游标效应。
咱FP出来的是多纵模,
两组FP,纵模间隔略作差异设计
能对准的就可以激射,向游标卡尺一样
这种双臂结构,有好些设计,原理都类同
还有已与采样光栅的DBR
量子级联激光器
量子级联激光器主要用在
咱们DFB是多量子阱结构(十来个),量子级联就是3个,通过量子隧穿三步完成激射。
电子不断从高能级向低能级跳,辐射出光子能量。
QCL量子级联激光器,同样可以做FP、DFB、外腔调制各种类型,波长集中在红外。
气体激光器
气体激光器是用气体做增益物质,CO2激光器是应用比较多的一种,主要在激光加工行业
CO2激光器,有一种辅助气体氮气,电击中氮气后,能量增加会被CO2吸收,再通过两侧反射镜,就激射出光。
光纤激光器
光纤激光器,增益物质叫增益光纤
普通传输信号的光纤是单包层,不产生增益
增益光纤是双包层
在泵浦光的作用下,纤芯就吸收能量,产生增益。增,就是放大。
光纤激光器,主要用于激光加工行业
准分子激光器
准分子激光器,也是一种气体激光器,他俩的区别在于CO2做不了超快激光器,它的加工过程产生热量,对加工面有损伤。
准分子激光器,破坏的是物质的肽键,对加工面不产生破坏力
准分子的准,是说常态下这些分子不存在,只有激发状态下才有,常用这些惰性气体做准分子激光器,193nm是半导体光刻工艺中最常用的。
常态下没有ArF这种分子,分别是蓝色的氟和红色的氩。
收到激发时,产生一个极端时间的ArF分子,从高能级跳下时分开同时产生一颗光子。
这个超短脉冲,破坏分子肽键,这就是加工过程。
世界上第一台激光器--红宝石激光器
1960年,梅曼发明第一台激光器,是红宝石激光器。
用红宝石做增益物质,在泵浦灯光作用下产生辐射,通过两个反射片进行放大,就是LASER,受激辐射光放大。
YAG激光器
类似,把红宝石晶体,换成钇铝石榴石,就叫YAG激光器,也是用于激光加工市场。
自由电子激光器
这是用于军事上的一类能量激光武器,可以穿透钢板。
目前体积也很大
它的原理很简单,用电子摆动起来(像波),光是电磁波。
用波动的电子做谐振,产生加速,产生巨大的光能量。
如何让电子产生波动性?磁可以改变电的方向
用一组极性交替分布的磁,让电子穿过去
电子就产生扭摆
这就成了自由电子激光器
太赫兹激光器
太赫兹,是个新兴技术,它的电磁波频谱介于微波与红外之间,(国华用绿色标志),刚好位于电学与光学范畴的交接点,太赫兹可以用于安检、以及早期癌症检测等等领域
它既可以做太赫兹电学应用,也可以做光学应用,光学上加反射腔等也可以做激光器。
用超短激光打在两片电极中间,就可以激射出太赫兹波。
它的电极(电学范畴这样)
太赫兹的传输,发射与接收
去年,MIT在nature发表一个中红外太赫兹激光器,波长100um。
▲激射太赫兹
▲同频同相,进行锁频放大
还没有评论,来说两句吧...